# Topic 7: Congruence and Similarity

| Term                         | Meaning |
|------------------------------|---------|
| Corresponding<br>Sides       |         |
| Proportional<br>Relationship |         |
| Constant of Proportionality  |         |
| Transformation               |         |
| Translation                  |         |
| Image                        |         |
| Congruent                    |         |
| Reflection                   |         |
| Line of Reflection           |         |
| Rotation                     |         |

| Center of<br>Rotation |  |
|-----------------------|--|
| Angle of Rotation     |  |
| Dilation              |  |
| Scale Factor          |  |
| Similar Figures       |  |

### **Translations**

### Reflections

Across x-axis: (x, y) ->

Across y-axis: (x, y) ->

### **Rotations**

### **Dilations**

#### TRANSLATIONS ON THE COORDINATE PLANE

auded Notes

#### **ESSENTIAL QUESTION**

What is a translation? How do I write the rule for a translation on the coordinate plane?

TRANSLATION

- A translation is a \_\_\_\_\_ of a figure in the up or down, and/or left or right direction. Every point of the figure moves the same \_\_\_\_\_ and \_\_\_\_
- To translate a figure on the coordinate plane, \_\_\_\_\_ or \_\_\_\_ to the x and/or y values depending on the direction of the translation.

TRANSLATION RULE:  $(X \pm \#, Y \pm \#)$ 

Right: (x + #, y)

Left: (x - #, y)

Up: (x, y + #)Down: (x, y - #)

1. Translate figure ABC 4 to the left and 3 up. Record the original & new coordinates in the table and see if you notice any patterns.



| ( | ORIGINAL IMAGE |    | NEW IMAGE | How were the x-coordinates effected in the translation? |
|---|----------------|----|-----------|---------------------------------------------------------|
| A |                | A' |           |                                                         |
| В |                | B, |           | How were the y-coordinates effected in the translation? |
| C |                | כי |           |                                                         |

2. Figure DEFG is translated to create Figure D'E'F'G'.

Verbal Description:

Rule:



3. Figure JKLMN is translated to create Figure J'K'L'M'N'.

Verbal Description:

Rule:



4. Figure XYZ is translated to create Figure X'Y'Z'.

Verbal Description:

Rule:



5. Figure RST is translated to create Figure R'S'T'.

Verbal Description:

Rule:



### Lesson 1: Analyze Translations

Goal: Use coordinates to describe the **rules of a translation Translate a 2D figure** on a coordinate plane by mapping each of its vertices

|                    | : an operation that | changes the position, shape or size of a |
|--------------------|---------------------|------------------------------------------|
| figure.            | · ·                 |                                          |
| Translation:       |                     | of a figure the same                     |
| and                |                     |                                          |
| The                | formed is           | to the original because they             |
| have the same shap | oe and size.        |                                          |

Translations are shown by  $(x, y) ----> (x\pm a, y\pm b)$ Points are labeled: A ----> A' B----> B'

Triangle XYZ has vertices X (-1, -2) Y (6, -3) Z (2, -5) Find the vertices of the image after a translation of 2 units left and 5 units up.

Quad ABCD has vertices A (0,0) B(2,0) C (3,4) D (0,4). Find the vertices after a translation of 4 units right and 2 units down.





Describe the translation from the unshaded figure to the shaded figure.



#### REFLECTIONS ON THE COORDINATE PLANE

auded Notes

#### **ESSENTIAL QUESTION**

What is a reflection? How do I write the rule for a reflection on the coordinate plane?

**REFLECTION** 

 A reflection is a \_\_\_\_\_\_ of a figure over a line of reflection to create a mirror image. Each point is \_\_\_\_\_ distance from the line of reflection on the opposite side. This year, we will be reflecting over the x-axis and y-axis.

REFLECT OVER X-AXIS RULE: (X, -Y)
REFLECT OVER Y-AXIS RULE: (-X, Y)

1. Reflect Figure ABC over the  $\mathbf{x}$ -axis & fill out the table.



|   | ORIGINAL<br>IMAGE |    | W IMAGE |
|---|-------------------|----|---------|
| A |                   | A' |         |
| B |                   | B, |         |
| C |                   | C, |         |

What patterns do you notice between the original & new coordinates? What is the rule for a reflection over the x-axis?



| ORIGINAL<br>IMAGE |  | NI | EW IMAGE |
|-------------------|--|----|----------|
| X                 |  | χ, |          |
| Υ                 |  | Y' |          |
| Z                 |  | Z' |          |

What patterns do you notice between the original & new coordinates? What is the rule for a reflection over the **y-axis**?

2. Reflect Figure ABC over the y-axis & fill out the table.

3. Does the transformation below show a reflection over the x-axis or the

y-axis?

4. Does the transformation below show a reflection

over the x-axis or the y-axis?

Rule:



Rule:

5. James thinks the rule for a reflection over the x-axis is (-x, y). Ramsey thinks the rule for a reflection over the x-axis is (x, -y). Who is correct and why?

6. Brooke thinks the reflection of point A (-8, 10) over the y-axis would transform to point A' (-8, 10) since the rule is (-x, y). Is she correct? Why or why not?

### Lesson 2: Analyze Reflections

Goal: **Understand reflections** as a type of transformation

Use coordinates to **describe the image created by a reflection Reflect a 2D figure** on a coordinate plane by **mapping** each of its vertices

| A reflection is a of the original fig of a figure over a line called | ure. It is the result of a transformation (Generally the x- or y-axis) |
|----------------------------------------------------------------------|------------------------------------------------------------------------|
| To reflect across the x axis: (x,y)>                                 |                                                                        |
| To reflect across the y axis: (x,y)>                                 |                                                                        |
| Reflect Triangle ABC across the x-axis A(5,2) B(1,3) C (-1,1)        | Reflect Quad DEFG across the y-axis. D(7,1) E (6,4) F(3,2) G(4,0)      |
| Reflect XYZ over the x-axis and then over                            | Reflect JKLM over the y-axis and                                       |
| the y-axis X (1,5) Y (3,7) Z (4,-1)                                  | then over the x axis J (2,3) K (5,1) L (4,-2) M (1,-1)                 |
|                                                                      |                                                                        |

#### ROTATIONS ON THE COORDINATE PLANE

Guided Notes

#### **ESSENTIAL QUESTION**

What is a rotation? How do I write the rule for a rotation on the coordinate plane?

**ROTATION** 

- \_\_\_\_\_ of a figure about a fixed point. This year, we will A rotation is a \_\_\_\_ always rotate about the \_\_\_\_\_
- Rotations can be \_\_\_\_\_\_ (turn to the right) or \_\_\_\_\_ (turn to the left).

#### 90° CLOCKWISE 270° COUNTERCLOCKWISE



| ORI | GINAL IMAGE | N  | EW IMAGE |
|-----|-------------|----|----------|
| A   |             | A' |          |
| ₿   |             | B, |          |
| C   |             | (' |          |

Patterns observed:

180° CLOCKWISE 180° COUNTERCLOCKWISE



| ORI | GINAL IMAGE | N  | EW IMAGE |
|-----|-------------|----|----------|
| D   |             | D' |          |
| E   |             | E' |          |
| F   |             | F' |          |

Patterns observed:

180° CW/180° CCW Rule:

### 270° CLOCKWISE 90° COUNTERCLOCKWISE



| ORI | GINAL IMAGE | N  | EW IMAGE |
|-----|-------------|----|----------|
| J   |             | l, |          |
| K   |             | K' |          |
| L   |             | ľ, |          |

Patterns observed:

90° CW/270° CCW Rule: 1. Rotate figure XYZ 90°

clockwise.



Rule:

2. Figure DEF was transformed to create figure D'E'F'.



Which rule describes this transformation?

A. (y, -x)

C. (-y, x)

B. (-x, -y) D. (-y, -x) 3. Figure QRST was transformed to create figure Q'R'S'T'.

270° CW/90° CCW Rule:



Which rule describes this transformation?

A.(y, -x)

B. (-x, -y) D. (-y, -x)

C. (-y, x)

### Lesson 3: Analyze Rotations

Goal: Determine how a rotation **affects** a 2D figure

Use coordinates to **describe the image created by a rotation Rotate a 2D figure** on a coordinate plane by **mapping** each of its vertices

| Rotation: a transformation in which a figure is rotated or about a fixed point (generally the origin) |                                                                                                 |                                               |  |  |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|
| The shape and size of the figur different.                                                            | The shape and size of the figure stay the same, but the direction it faces will look different. |                                               |  |  |
| The rotations show                                                                                    | n here are counterclockwise aroun                                                               | d the origin                                  |  |  |
| 90°                                                                                                   | 180°                                                                                            | 270°                                          |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                |                                                                                                 | 8 D C B A X A B A A A A A A A A A A A A A A A |  |  |
| 90° (x, y) —>                                                                                         | 180° (x, y) —>                                                                                  | 270° (x, y) —>                                |  |  |









Rotate DEF 270° D(-4,4) E(-1,2) F(-3,1)

Grade 8 Topic 7

## DILATIONS & SCALE FACTOR

auded Notes

|                                                                                                                                                                   |                                                                                        | QUESTION ? How do I find a scale factor?                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCALE FACTOR                                                                                                                                                      | <ul> <li>The ratio can be found by</li> </ul>                                          | between the corresponding parts of similar figures.  a corresponding new & original side length.  cale Factor = new *A new figure is often denoted with a prime (') symbol |
| DILATION                                                                                                                                                          | by the scale factor. The new im but will be or                                         | nation that produces a similar figure by<br>lage will have the same shape & congruent angles,<br>The new & original figures will have<br>tween the corresponding sides.    |
| REDUCTION                                                                                                                                                         | A dilation where the scale factory     than the original                               | or is than one. The new figure will be<br>l.                                                                                                                               |
| ENLARGEMENT                                                                                                                                                       | A dilation where the scale factory     than the original                               | or is than one. The new figure will be<br>l.                                                                                                                               |
| Figure I to create                                                                                                                                                | ctor that was used to dilate Figure II.  II 8 cm  Circle one: Enlargement or Reduction | 2. Find the scale factor that was used to dilate circle X to create circle Y.  CIRCLE X  CIRCLE Y  2 cm  1.5 cm  Scale Factor: Circle one: Enlargement or Reduction        |
| below. K 12 cm L N 16 cm                                                                                                                                          | K' 4.8 cm L' N' 6.4 cm M'  Circle one: Enlargement or Reduction                        | 4. Find the scale factor that was used to dilate square ABCD to create square A'B'C'D'  A 6 m B B'C'D'  Scale Factor: Circle one: Enlargement or Reduction                 |
| 5. Figure A is dilated by a scale factor of 3. What are the dimensions of the new figure?  7 feet  FIGURE A  3.5 feet  New Dimensions:  Enlargement or Reduction: |                                                                                        | 6. Figure B is dilated by a scale factor of ½. What are the dimensions of the new figure?  4 inches  FIGURE B 5 inches  New Dimensions:  Enlargement or Reduction:         |

### Lesson 4: Describe Dilations

Goal: Verify the properties of a **dilation Graph the image of a dilation** given a fixed center and scale factor

| A dilation moves each point along a ray through the point and starting from a                                                |                                                      |
|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| (generally the origin.)                                                                                                      |                                                      |
| The distances from the points to the center are factor.                                                                      | by a common scale                                    |
| The original and the image will have the same shape                                                                          | but the will depend on                               |
| the                                                                                                                          |                                                      |
| A figure VWX has coordinates $V(0,0)$ W $(8,0)$ X $(3,-2)$ . Find the coordinates after a dilation with a scale factor of 4. |                                                      |
| Figure ABCD has coordinates A(-2,4) B(1,4) C(-3,-1) D(3,-1). Find the coordinates after a dilation with a scale factor of 2. |                                                      |
| Dilate with a scale factor of 3<br>Q(-1,1)R(1,1)S(2,-1)T(-1,-1)                                                              | Dilate with a scale factor of ½ A(4,8) B(8,6) C(6,5) |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
| 7                                                                                                                            |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |
|                                                                                                                              |                                                      |

### Lesson 5: Solve Problems Involving Similar Triangles

Goal: Identify similar triangles
Find missing side lengths of similar triangles

9) Lance the alien is 5 feet tall. His shadow is 8 feet long.



At the same time of day, a tree's shadow is 32 feet long. What is the height of the tree?



11) A statue, nonoring Ray Hnatyshyn (1934–2002), can be found on Spadina Crescent East, near the University Bridge in Saskatoon. Use the information below to determine the unknown height of the statue.





#### Extra Problems for Practice

If two polygons are similar: ~

- 1.
- 2. \_\_\_\_\_

Match the congruent corresponding parts when naming the similar figures.

You can write a \_\_\_\_\_\_ to determine if two triangles are similar.

Determine if the triangles are similar





A fire hydrant that is 2.5 ft high casts a shadow that is 5 ft long. How high is the lamp that casts a 26 ft shadow?



The triangles are similar. Find the distance across the lake.

